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We present the bifurcation pattern of the thermocapillary horizontal convection flow of succinonitrile(SCN)
in an open top parallelepipedic cavity with dimensions 43131. The bifurcation parameter is the Rayleigh
numbersRad that was investigated in the rangef150;53108g while the Marangoni numbersMad was kept at
Ma=104. Several steady flow configurations are described for Raø53107. Then the occurrence of periodic
and quasiperiodic flows is shown for values of Ra,53108 and at Ra=53108 the chaos arises. It is also
proved numerically the coexistence of different temporal regimes at the same value of Ra according to the
thermal history of the fluid.
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I. INTRODUCTION

During the growth of metal and semiconductor crystals
from a liquid melt in a horizontal boat, undesirable striations
corresponding to an irregular distribution of solute sub-
stances in the crystal may occur. It has been shown that such
striations are caused by spontaneous temperature oscillations
generating fluctuations in the rate of growth of the crystal
[1]. Experiments without solidifications carried out for pure
molten gallium [2] with a horizontal temperature gradient
exhibit such oscillations. It has been found that for small
temperature differencesDT, the flow is steady and simply
unicellular(so-calledreturn flow). While for DT larger than a
critical value, the fluid flow reaches an oscillatory regime.

A large amount of research has been done on the model of
the float-zone crystal-growth process(known as thehalf-
zone). In this model, a liquid bridge is held in place by sur-
face tension forces between two coaxial cylindrical rods at
different temperatures. The first results about oscillatory con-
vection in half-zones are from the work of Schwabeet al.
[3]. Moreover, the transition from steady to oscillatory ther-
mocapillary convection has been studied theoretically by
many authors, in different geometries. Several distinct insta-
bility mechanisms leading to oscillatory flow have been
demonstrated. Smith and Davis[4] discovered thereturn
flow instability called hydrothermal waves, which is a tem-
perature disturbance wave that propagates in a direction that
depends on the Prandtl numbersPrd. For example, when the
Prandtl number is small and the inertial forces are dominat-
ing, it was seen that it propagates spanwise(perpendicular to
the surface flow); on the contrary, for large Prandtl numbers,
it propagates along the upstream direction. They also found
the surface wave instability, which is caused by the interac-
tion of the base state shear at the open top and the velocity

disturbance induced by a perturbation of the free surface.
Experiments have been conducted by Riley and Neitzel[5]
to investigate the hydrothermal-wave instability in a cavity
filled with a silicon oil sPr=14d. The transition from a steady
unicellular flow to hydrothermal wave was observed in a thin
layer sH /L=1/30d while experiments in a deep layer do not
show this kind of instability, but rather a transition to steady
multicellular structure and then to oscillatory flow.

In two-dimensional containers, Villers and Platten[6] ob-
served a steady roll structure that becomes oscillatory when
the thermal forcing is increased. It may be related to the
instability mechanism investigated by Smith[7] in the case
of a large Prandtl number. For small Prandtl numbers, the
instabilities seems to be entirely of hydrodynamical kind, as
shown by Ben Hadid and Roux[8] who found temperature
and velocity fields totally decoupled in their simulations.

Although the study of flows driven by the combined ac-
tion of buoyancy and thermocapillary forces has been the
subject of intense investigations(both numerically and ex-
perimentally) there is still a lack of knowledge about the
transition to chaos. In the present work we describe our in-
vestigation on this aspect. We have studied numerically the
flows of pure succinonitrile(SCN) sPr=23d developing in a
parallelepipedic cavitys43131d. This choice is due to the
fact that during solidification processes this material behaves
like a metal but it is transparent and hence is suitable for
validations by physical experiments. In our tests the Ma-
rangoni number has been kept constantly Ma=104, while the
Rayleigh number has been increased up to 53108 in order to
analyze the transition mechanism to the chaos. Even if a
precise scientific definition of chaos does not exist, our com-
mon experience is related to some of its typical properties,
the most representative of which is the(partial) unpredict-
ability of the results:A chaotic system loses the memory of
itself or, in other words, the knowledge of the status of the
system for a finite time interval does not allow us to foresee
its further evolution. In the last 20 years, three main sce-
narios that lead to chaos have been classified and deeply
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investigated according to the different sequence of temporal
regimes: the Feigenbaum cascade, the Ruelle-Takens route,
and the Manneville-Pomeau route[10]. These transition
paths have been detected in several systems, both numeri-
cally and experimentally[11–14]. In our case we have ob-
tained the numerical evidence that the system evolves to
chaos following the Ruelle-Takens route, that is passing
through the following flow regimes, steady, periodic, quasi-
periodic with two frequencies, and quasiperiodic with three
frequencies. Besides, it should be noted that another bifurca-
tion branch has been detected through just steady flow re-
gimes. The presence of multiple stable flows qualifies the
system as strongly dependent on its thermal history.

The numerical simulations described here are obtained by
a finite discretization of the vorticity-velocity formulation of
the Navier-Stokes equations for incompressible nonisother-
mal fluids. The discrete model is solved by a true transient
procedure that guarantees the fulfillment of the mass conser-
vation law and of the vorticity definition up to round-off
error.

This paper is structured as follows: In the next two para-
graphs, the mathematical formulation and the solution proce-
dure are briefly explained, respectively, then the presentation
and discussion of the numerical results follow.

II. FORMULATION OF THE PROBLEM

The flow domain considered here is a parallelepipedic
cavity whose dimensions areLx=4, Lz=1, andH=1 (H is the
vertical dimension) (Fig. 1). Within a counter-rotating refer-
ence frame, they direction is the vertical one. This cavity is
filled with SCN. A driving temperature difference in thex
direction is imposed by properly prescribing the temperature
at the two vertical solid walls atx=0 and x=Lx; the four
remaining boundaries are assumed to be insulated and re-
quire adiabatic boundary conditions. The top free surface,
located aty=H, is supposed to be flat; the gas above the free
surface is assumed to have negligible viscosity and conduc-
tivity so that it does not influence the flow and temperature
fields of SCN. For the liquid of interest, surface tension de-
creases with increasing temperature and the following linear
function is considered an adequate approximation to this re-
lation:

s = sr − gsu − urd,

g =
] s

] u
.

Through the tangential stress balance at the interface, sur-
face gradients of the temperature field generate an interfacial
shear stress which drives the surface flow in the direction
opposite to that of the temperature gradient(see Sec. II A).

The SCN flow is governed by the Navier-Stokes equa-
tions and the Boussinesq approximation is assumed to hold.
The formulation in terms of vorticityv, velocity u
=su,v ,wd, and temperatureu follows:

] v

] t
+ = 3 sv 3 ud =

Pr

Ma
¹2v −

Ra Pr

Ma2 ¹ 3 Su
g

uguD ,

s1d

¹2u = − = 3 v, s2d

] u

] t
+ su · =du =

1

Ma
¹2u. s3d

We remind the reader that the nondimensional parameters
Ra, Pr and Ma are defined as

Ra =
gbDTH3

kn
, Pr =

n

k
, Ma =

gDTH

mk
,

where, beside the known quantities,g is the gravitational
acceleration,b is the coefficient of thermal expansion,DT is
the temperature difference between the opposite vertical
walls, k is the thermal diffusivity,n is the kinematic viscos-
ity, and m is the dynamic viscosity. The non-dimensional
scheme adopted is based on the reference velocityu*

=gDT/m and the reference timet* =Hm /gDT. This scheme
is particularly advantageous, as it avoids the presence of
non-dimensional parameters in the expression of the bound-
ary condition at the free surface.

During the simulations, the heat flux from the hot to cold
wall through a sectionS has been evaluated by means of the
mean Nusselt number

Nu =
1

S
E

S
suu − = ud ·ndS.

This expression represents the ratio between the total heat
flux versus the heat flux related to the purely diffusive case.

A. Boundary conditions

The above formulation allows a very simple form of the
boundary conditions

(1) The boundary conditions associated with Eq.(1) are
obtained by the vorticity definition written on the boundary.
We shall see in the following paragraph that the time dis-
cretization scheme used handles this boundary condition by
updating vorticity and enforcing its definition at each time
step. This procedure contributes to the correct coupling be-
tween the kinematic and the dynamic parts of the problem.

FIG. 1. The computational domain.
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(2) Dirichlet boundary conditions are associated to the
elliptic velocity Eq. (2). In particular null velocity field is
assigned at the solid walls; at the top free surface it holds

v = 0,

] u

] y
= −

] u

] x
,

] w

] y
= −

] u

] z
,

where the last two conditions are obtained by enforcing the
second dynamics law. We observe that the second condition
above introduces a jump discontinuity atx=0 andx=4. Ac-
tually at those cartesian planes the velocity componentu is
null due to the presence of a rigid wall; consequently,]u/]y
is null. On the contrary, at the free surface,]u /]x is a mea-
sure of the thermocapillary effects and is not at all vanishing.
However this inconsistency of the formulation has no effect
within the numerical solution procedure here adopted be-
cause this is based on a finite difference discretization and
the discontinuity edge is left out of the computational do-
main as if regularized boundary values were imposed.

(3) The boundary conditions for the energy equation are
easily derived from the definitions and are of Dirichlet or
Neumann type in those portions of the boundary where, re-
spectively, the value of temperature or its normal derivative
are known.

u = Tc at x = 0,

u = Th at x = Lx,

] u

] n
= 0 atHy = 0,y = H,

z= 0,z= Lz.

The hypothesis, here assumed, that the top free surface of the
cavity is flat is consistent with the presence of an oil film
that counteracts the effects of the surface tension gradients in
the vertical directionsyd eventually enhanced by heat flux in
the same direction. On the other hand, as it was just illus-
trated, in the present case, heat flux at the top free surface is
assumed to be null.

III. NUMERICAL METHOD

The governing Eqs.(1)–(3) together with the proper
boundary conditions are discretized by using finite difference

approximations. Spatial derivatives are discretized on a uni-
form mesh through central second-order differences while
time derivatives are discretized through a three-point second-
order backward differences. Maximum accuracy is allowed
by a staggered variable location. At this purpose the MAC
(Marker and Cell) stencil, originally built for thesu ,ud for-
mulation by Harlow and Welch[15], has been adapted to the
presentsu ,v ,ud formulation. In general when each velocity
component is evaluated at the center of the faces of the com-
putational cells, which are orthogonal, the mass conservation
law at the discrete level can be satisfied up to a round-off
error. In a similar way, by evaluating the vorticity compo-
nents at the mid-point of the edges of the computational cell
which are parallel, the natural property of solenoidality of
the vorticity can be met at the discrete level up to a round-off
error. Furthermore in our model, staggering of the variables
allows us to discretize Eq.(2) without any need of variable
averaging. However in discretizing Eq.(1) averaging is still
necessary for the treatment of the advective term=3 sv
3ud, where the productv3u is here averaged in the whole.
In this way the resulting discrete equation is consistent with
the implicit property of solenoidality of the vorticity field
expressed in discrete form.

The computation of the numerical solutions has been per-
formed by a time dependent algorithm. A true transient pro-
cedure requires particular care when used together with the
vorticity-velocity formulation. In fact the continuity equation
is imposed only in an implicit way by dropping the term=
3u in Eqs.(1)–(3) so that mass conservation and definition
of vorticity could be violated if strong coupling of the full set
of the equations is not ensured. The time integration has been
developed by means of an implicit numerical scheme that
has been linearized through the “frozen coefficients” tech-
nique [16].

In this way at each time step our original system of partial
differential equations gives rise to a large linear system of
equations of the type

Ax = b,

wherex is the unknown vector andb is the known vector.
The coefficient matrixA has a very sparse structure. The
solution of this linear system via a direct method is obvi-
ously not recommended due to the size of the problem, and
an iterative procedure has been adopted, a variant of precon-

TABLE I. Mesh sensitivity analysis: Pr=23, Ra=1000, Ma
=10 000.

25315315 41321321 61331331

umax 5.523310−2 5.666310−2 5.737310−2

vmax 2.854310−2 2.767310−2 2.723310−2

wmax 0.798310−2 0.791310−2 0.788310−2

Nu 14.824 15.973 16.548

TABLE II. Thermophysical properties of pure SCN.

Property Value

Melting point Tm=54 °C

Density r=988 Kg/m3

Thermal expansion b=7310−4 K−1

Viscosity m=2.56310−3Kg/ms

Kinematic viscosity n=2.591310−6m2/s

Thermal conductivity l=0.223 W/mK

Thermal diffusivity k=1.127310−7m2/s

Prandtl number Pr=23
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ditioned conjugate gradient. This approach has the advantage
to allow a great flexibility in writing the discretized form of
numerical model. We have used the Bi-CGSTAB(biconju-
gate gradient stabilized) algorithm [16,17], because of its
numerical stability and speed of convergence.

Although, from a theoretical point of view, iterative meth-
ods can be used without preconditioning the linear systems
of equations, the use of a preconditioning technique is, in
many practical applications, essential to fulfil the conver-
gence and stability requirements of the iterative procedure
itself. The aim of the preconditioner is to convert the original
linear system to an equivalent but better-conditioned system.
This consists of finding a real matrixC such that the new
linear system

C−1Ax = C−1b

has(by construction) better convergence and stability char-
acteristics than the original system. It is obvious that the

matrix C must be chosen carefully so thatC−1 should be
close to the inverse ofA and easy to be inverted in order to
compress the computational cost. As a matter of fact the ILU
(incomplete LU) factorization is one of the most robust and
widely used preconditioners:C is defined as the productLU
of a lower sLd and an uppersUd triangular matrix generated
by a variant of the Crout factorization algorithm where only
the elements ofA that are originally nonzero are factorized
and stored. In this way the sparsity structure ofA is com-
pletely preserved. Testing of the described numerical model
has been extensively discussed in Ref.[16].

The numerical inaccuracies reported here in meeting mass
conservation and vorticity definition had the same order of
magnitude as the round-off error at each time step. The cri-
terion used in order to assess the steadiness of the flow is
based on the numerical evaluation of the time derivative of
v averaged on the whole flow field, when this value is

TABLE III. Value of Ra, corresponding maximum values of velocity components, Nusselt number in the
middle plane normal to thex axis and temporal regime.

Ra umax vmax wmax Nux Regime

1.53102 4.925310−2 2.422310−2 0.708310−2 15.741 S

103 5.666310−2 2.767310−2 0.791310−2 15.973 S

104 4.728310−2 2.433310−2 0.719310−2 18.640 S

105 3.671310−2 2.527310−2 0.925310−2 27.539 S

106 4.392310−2 4.418310−2 1.001310−2 36.251 S

53106 5.835310−2 5.293310−2 1.310310−2 39.431 S

107 7.414310−2 6.383310−2 1.751310−2 44.490 S

53107 0.107 7.439310−2 2.766310−2 49.638 S

FIG. 2. Pr=23, Ma=10 000—LIC representation at the plane
z=0.5 at Ra=150(a), 105 (b), 53106 (c), and 53107 (d).

FIG. 3. Pr=23, Ma=10 000—Isothermal lines at the planez
=0.5 at Ra=150(a), 105 (b), 53106 (c), and 53107 (d).
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smaller than a fixed quantitys10−9d the flow is considered
steady.

The visualization of the numerical flows has been realized
by means of LIC(line integral convolution), which is a vec-
tor field representation for the global realistic visualization of
a surface flow[18]. In contrast to tracing single streamlines,
the LIC technique is based on the tracing of a high number
of relatively short streamlines, that are actually convoluted
with an initially random distribution of black and white
points on the target surface(seeds). Resulting LIC images
appear very similar to some typical flow visualizations(oil
flow patterns), thus well suited for numerical-experimental
comparison. However, it is worth observing that LIC allows
only qualitative comparisons, therefore numerical tables are
also included.

IV. RESULTS

The numerical model described above was adopted to
solve several thermal convection flow problems in parallel-
epipedic domains and the computational code was repeatedly
validated as mentioned in Ref.[14]. In the study of the hori-
zontal thermal convection flow in a shallow three-
dimensional closed cavity, the space mesh sensitivity analy-
sis lead the authors to the conclusion that a mesh with a
spatial resolution of 0.05 in the vertical direction is sufficient
to obtain accurate results[14]. Due to the physical similari-
ties of the present flow problem, we expect that the same
spatial resolution(corresponding on the chosen domain to a
41321321 space grid) is sufficient to describe the whole
flow structures. Anyway a space mesh refinement analysis
has been developed for the case at Ra=1000 and Ma
=10 000. The list of the values ofumax, vmax, wmax, andNux,
respectively, the maximum of the modulus of each velocity
component, and the Nusselt number at the middle plane nor-

mal to thex axis, obtained at different space meshes, is dis-
played in Table I.

A rapid inspection confirms the adequacy of the average
grid that is used in the numerical tests of the following para-
graphs. It is worth mentioning that by time and space mesh
sensitivity analysis in a two-dimensional problem we
reached the conclusion that the numerical model is “nearly”
second order accurate both in time and in space as reported
in Ref. [16]. Actually the linearization procedure applied to
the convective terms within the discretized equations slightly
lowers the degree of accuracy of the overall discrete operator
with respect to the single discrete schemes used.

In Table II, we recall the thermophysical properties of
pure SCNsPr=23d, the transparent organic plastic fluid that
fills the cavity.

The nondimensional values of temperature at cold and hot
walls are, respectively,Tc=0 andTh=4. A series of numeri-
cal simulations has been performed assuming that the Ma-
rangoni number is constant and equal to 10 000, while the
Rayleigh number has been changed in a wide range, from
150 to 53108, in order to understand the influence of the
increasing buoyancy on the physical mechanism of the flow
instability. Instabilities of both types, spatial and temporal,

TABLE IV. Transition to the chaos: List of temporal regimes
obtained as a function of the increase in Ra.

From Ra To Ra Regime

53107 → 108 S

53107 → 4.253108 P

53107 → 4.33108 QP2

53107 → 4.53108 QP2

53107 → 53108 N

TABLE V. Value of Ra, corresponding maximum values of ve-
locity components, Nusselt number in the middle plane normal to
the x axis and temporal regime.

Ra umax vmax wmax Nux Regime

4.253108 0.142 0.097 0.377310−1 61.628 P

4.33108 0.179 0.170 0.589310−1 68.854 QP2

4.53108 0.313 0.880 0.211 95.523 QP2

53108 0.453 1.192 0.284 52.683 N

FIG. 4. Pr=23, Ra=4.33108, and Ma=10 000—Time history
of the x component of velocitysud at the point(0.8, 0.5, 0.4).

FIG. 5. Pr=23, Ra=4.33108, and Ma=10 000—Time history
of the temperature at the point(0.8, 0.5, 0.4).
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have been detected. The following nomenclature has been
adopted in order to characterize the occurring temporal re-
gimes:

(a) S. steady state;
(b) P. periodic regime with one fundamental fre-

quency;
(c) QP2. quasiperiodic regime with two incommensu-

rate frequencies;
(d) QP3. quasiperiodic regime with three incommensu-

rate frequencies;
(e) N. chaotic regime.

The parallel flow solution valid for an infinite layer yields
a simple cubic polynomial expression for the horizontal ve-
locity profile usyd, taking into account both the thermocapil-
lary and the buoyancy effects, while a simpler parabolic pro-
file is obtained when thermocapillarity acts alone. Such
explicit forms are very useful to adopt when one is interested
in the basic convective states, for low values of the control
parameters; however, for limited domains they are valid only
in the core region; besides, for increasing values of the con-
trol parameters the basic flow is more and more distorted and
finally undergoes a transition to unsteady regimes as it will
be shown in the next paragraphs.

A basic finding of our investigation is that each spatial/
temporal instability which characterizes the system for an
assigned Ra is not uniquely determined but it depends on the
chosen growth rate of Ra between subsequent simulations,
or, in other words, it depends on the thermal history of the
flow.

A. Steady flow configurations

The first simulation has been conducted assuming the
value Ra=150 and starting from rest. Further simulations
have been executed for increasing values of Ra, starting from
the flow, and thermal fields obtained at the last considered
value of Ra. For values of Ra up to 53107 steady solutions
were obtained. Table III reports the maximum values of the
three velocity components and the average Nusselt number
in the x direction as a function of Ra. In Fig. 2 the flow
configuration at four selected values of Ra can be seen. In
this figure, the LIC representations in thez-normal plane at
z=0.5 are shown. The corresponding isothermal lines in the
same section are shown in Fig. 3.

At Ra=150, a large counterclockwise circulation pushed
toward the hot wall is apparent. This is typical of fluids hav-
ing Pr larger than 10. Besides, a second smaller vortex ap-
pears, localized at aboutx=1.5. There is no significant dif-
ference among thez-normal planes so that the flow appears
two-dimensional. The temperature variation from the cold to
hot wall is not monotonic, due to the contribution of the
thermocapillary effects. Temperature gradients are largest
near the hot and cold walls, while the gradient near the mid-
plane is relatively smaller.

At Ra=105, a significant change of the flow configuration
is observed, as it looks much more regular than in the previ-
ous cases. In fact a single vortex near the hot wall is ob-
served. This is unexpected as it is usually observed that when
the control parameters increase, the flow complexity also in-
creases. The larger order in the flow configuration is accom-
panied by a much more regular distribution of the isotherms
with respect to the previous cases: The temperature jumps
are concentrated near the vertical walls, while the tempera-
ture is about constant in the bulk of the fluid. The counter-
intuitive behavior of the flow is also confirmed by the value
of the three velocity components, reported in Table III: One
might expect a monotonic increase of these values as Ra
increases; on the contrary, the componentu reaches the mini-
mum value at Ra=105, v andw reach the minimum value at
Ra=104.

FIG. 6. Pr=23, Ra=4.33108, and Ma=10 000—FFT applied
on the time history of thex component of velocitysud at the point
(0.8, 0.5, 0.4).

FIG. 7. Pr=23, Ra=4.33108, and Ma=10 000—LIC represen-
tation at the planez=0.15.

FIG. 8. Pr=23, Ra=4.33108, and Ma=10 000—LIC represen-
tation at the planez=0.5.

FIG. 9. Pr=23, Ra=4.33108, and Ma=10 000—LIC represen-
tation at the planez=0.85.
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At Ra=53106, the flow structure no longer consists of a
unique large roll but two new rolls superimposed to the ini-
tial structure appear: The first one appears in the lower re-
gion near the hot wall, the second one in the upper region
near the cold wall. This change of the flow configuration
does not affect the thermal field.

At Ra=53107, the flow configuration looks quite differ-
ent with respect to the one obtained in the previous case,
because the two rolls now have a larger dimension: The first
one has invaded all the upper half of the domain, the second
one occupies all the lower half of the domain with the ex-
ception of a small region near the cold wall.

B. Transition to chaos

The next simulations have been performed for increasing
values of Ra, assuming the numerical solution obtained at
Ra=53107 as basic flow. The list of the temporal regimes
obtained is reported in Table IV. Table V reports the maxi-
mum values of the three velocity components, the average
Nusselt number in thex direction and the temporal regime
which characterizes each simulation, as a function of Ra. For
the unsteady solutions, the quantities reported in the table
have been averaged over a sufficiently long time interval.

At Ra=4.253108 an unsteady periodic flow with a fun-
damental frequency was found. A fast Fourier transform
(FFT) applied on the time history of thex-component of
velocity sud at the point(0.8, 0.5, 0.4) highlights the presence
of one fundamental frequencyf1=1.4132. Here we detected
the first Hopf bifurcation.

Starting from the flow configuration obtained at Ra=5
3107, an increase in Ra at 4.33108 leads to the second
Hopf bifurcation with a transition to a quasi-periodic regime
with two incommensurate frequencies. Figures 4 and 5 show
respectively the transient history of thex-component of ve-
locity sud and of temperature at the point(0.8, 0.5, 0.4). A
FFT applied on the time history of thex-component of ve-
locity sud (Fig. 6) identifies the value of the two main fre-
quencies,f1=1.4038 andf2=0.1953, which coexist with sev-
eral harmonics. Figures 7–9 show the LIC representations at

three differentz-normal planes, respectively,z=0.15,z=0.5,
andz=0.85. An analysis of the flow configuration shows that
the one roll configuration is destroyed and replaced by a
sequence of ten rolls, whose axes are parallel to thez axis.
This is a configuration similar to those observed in other
convection problems(e.g., the Rayleigh-Bénard convection)
[19]. Figure 10 shows the isothermal lines in thez-normal
plane atz=0.5. We can observe that the thermal field is not
influenced by the change in the flow structure and that the
destabilization is entirely hydrodynamical.

Starting from the flow configuration obtained at Ra=5
3107, the next simulation has been executed at Ra=4.5
3108. In this case the flow remains quasiperiodic even for
this value of Ra, with slightly different values of the main
frequencies. We observe that both the value of the main fre-
quencies decrease, while their ratio increases as Ra grows
(Table VI).

At Ra=53108, a transition to a chaotic regime is ob-
served. However this is not a direct transition and the pres-
ence of a quasiperiodic regime with three incommensurate
frequencies has been observed during the initial stage of this

TABLE VI. Periodic and quasiperiodic regimes: Main frequen-
cies and their ratio as a function of Ra.

Ra f1 f2 f1/f2

4.253108 1.4132 - -

4.33108 1.4038 0.1953 7.187

4.53108 1.3916 0.1708 8.147

FIG. 10. Pr=23, Ra=4.33108, and Ma=10 000—Isothermal
lines at the planez=0.5.

FIG. 11. Pr=23, Ra=53108, and Ma=10 000—Time history of
the x-component of velocity(u) at the point(0.8, 0.5, 0.4).

FIG. 12. Pr=23, Ra=53108, and Ma=10 000—Time history of
the temperature at the point(0.8, 0.5, 0.4).
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simulation. Figures 11 and 12 show, respectively, the tran-
sient history of thex-component of velocitysud and of tem-
perature at the point(0.8, 0.5, 0.4). As shown in Fig. 13, the
FFT of the time history of thex-component of velocitysud
highlights the presence of three fundamental frequencies
sf1=4.88310−2, f2=0.378,andf3=1.135d. However, a
broadband noise, typical of the chaotic systems, is also ob-
servable.

In conclusion, the bifurcation sequence observed is the
following:

S→ P → QP2s→QP3d → N.

This is the well-known Ruelle-Takens route, which has been
subject of theoretical as well as practical investigations in
several different flow systems. We detected it numerically for
the first time in the flow system presently studied.

We have studied the system up to reaching the maximum
value of the bifurcation parameter Ra=109 and observed that
the flow still keeps evolving towards chaos.

C. Persistence of the steady state

Further simulations have been performed following the
scheme indicated in Table VII. Table VIII reports the maxi-
mum values of the three velocity components, the average
Nusselt number in thex direction, and the kind of regime
which characterizes each simulation, as a function of Ra. In
Fig. 14 the flow evolution for the four selected values of Ra
can be seen. In this figure, the LIC representations in the
z-normal plane atz=0.5 are reported.

Starting the simulation from the flow configuration ob-
tained at Ra=53107, the next simulation has been per-
formed at Ra=108, obtaining a steady flow configuration
which looks similar to the initial one. From this numerical
solution, the next simulation has been performed at Ra=3
3108, obtaining again a steady flow configuration similar to
the initial one.

Starting the simulation from the flow configuration ob-
tained at Ra=33108, the next case that we have run was at
Ra=43108; a significant difference emerged, that is the two
rolls merged into a single large one and gave rise to a much
more regular configuration, which looks like the Poiseuille-
Couette flow between parallel planes.

Starting the simulation from the flow configuration ob-
tained at Ra=43108, further simulations have been per-
formed at Ra=4.23108 and 4.33108: in both cases, steady
configurations were obtained again. This is a significant re-
sult, as we have seen in the previous paragraph that at Ra
=4.33108 a quasiperiodic flow was also found. These flows
differ also in the spatial configuration, actually the steady
flow consists of one roll whereas the quasiperiodic one fea-

TABLE VII. Persistence of the steady state: List of temporal
regimes obtained as a function of the increase in Ra.

From Ra To Ra Regime

53107 → 108 S

108 → 33108 S

33108 → 43108 S

43108 → 4.33108 S

TABLE VIII. Value of Ra, corresponding maximum values of
velocity components, Nusselt number in the middle plane normal to
the x axis and temporal regime.

Ra umax vmax wmax Nux Regime

108 0.134 8.798310−2 3.548310−2 59.182 S

33108 0.192 0.123 5.554310−2 76.542 S

43108 0.255 0.274 7.627310−2 96.444 S

4.33108 0.263 0.291 7.880310−2 98.636 S

FIG. 13. Pr=23, Ra=53108, and Ma=10 000—FFT executed
on the time history of thex component of velocitysud at the point
(0.8, 0.5, 0.4).

FIG. 14. Pr=23, Ma=10 000—LIC representation at the plane
z=0.5 for Ra=108 (a), 33108 (b), 43108 (c), and 4.33108 (d).
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tures a ten roll structure. This aspect suggests that the nu-
merical flows obtained depend on the thermal history of flow,
that is, in particular, on the initial flow and temperature
fields.

V. CONCLUSIONS

We have computed by numerical simulation the bifurca-
tion pattern of the thermocapillary horizontal convection
flow of SCN sPr=23d in an open top parallelepipedic cavity
with the dimensions43131d. The bifurcation parameter is
the Rayleigh number that was investigated in the range
f150;53108g; the Marangoni number was kept at Ma=104.

The simulation at Ra=150 was started from rest; the fol-
lowing simulations were obtained by stepping up the value
of Ra and starting the computation from the flow and thermal
field just obtained at the previous run. Following this proce-
dure, several steady flow configurations have been obtained
for Raø53107, characterized by the one roll, the two roll,
and the ten roll flow structures respectively, for increasing
values of Ra. Although the morphology of such flows is quite
different, heat transport develops in similar ways, as can be
deduced from the plots of the isothermal lines. Actually, all
these cases exhibit sharp boundary layers at the boundaries at
constant temperature and vertically stratified bulk. For Ra
such that 53107øRa,53108, we experienced two differ-
ent strategies for the initialization of the time integration.
First, by continuing with the procedure described above, we

simply obtained the persistence of the steady regime with,
respectively, two-roll and single-roll flow structures for in-
creasing values of Ra. In the other case, by choosing as the
initial condition the flow and thermal fields computed at the
minimal extremum value Ra=53107 we found the occur-
rence of periodic and quasiperiodic flows. At Ra=53108,
chaos arises through a transitory three-frequence quasiperi-
odic regime according to the Ruelle-Takens route. These dif-
ferences highlight a strong dependence of the flows on their
thermal history aspect that will be the subject of further in-
vestigation.

In principle, we cannot exclude that the system of partial
differential equations that we solve, due to nonlinearity, ad-
mits other bifurcation patterns along Ra variations depending
on different choices of the initial flow. In the same way,
different preconditioners within the solution of the nonlinear
discretized model might induce a jump from a branch to
another in the bifurcation pattern of the flow. However, we
stress that the ILU preconditioner used here is most robust
and also the presented solutions have been computed up to
the round-off error.
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